MMDetection 项目
现在正式开始 MMDetection 项目!之前有一个想法,看看能不能用 MMDetection 来检测网球比赛中的网球球速,使用了 Faster-RCNN 模型试了下目标检测,发现对于网球这种小物体根本检测不出来,在视频中就是非常小的一个像素点。那么能不能使用自己标注的数据集来训练一个小目标检测(仅网球)的网络,来对网球视频进行检测?现在来进行具体的试验
数据集
使用 Labelme 进行标注,并转化为 COCO 数据集。将数据集按照如下结构排列
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
其中 annotations 放置 coco format json 文件,其他文件夹放置图片数据集
准备 config 文件
由于标注文件是有做 segmentation 的,选择 Mask-RCNN 作为模型
base config: Mask-RCNN-R101-FPN
checkpoint: model
放置在 /mmdet/config/mask_rcnn
下,具体 config 文件放在文末
训练
目前还是不能跑起来,预计是 config 文件和数据集 CLASSES 的原因,还有要注意 config 的继承关系!
由于继承机制,使用了
RepeatDataset
不对原数据集类型进行修改,不然报错TypeError: CocoDataset: __init__() got an unexpected keyword argument 'times'
遇到报错
AssertionError: The `num_classes` (1) in Shared2FCBBoxHead of MMDataParallel does not matches the length of `CLASSES` 80) in RepeatDataset
依旧是由于
ReapeatDataset
造成的,由于对这个类不够了解,所以频繁报错😅这里的逻辑是因为没有指定classes
,由于原 coco 数据集有80个类,自己的类别不一定是原 COCO 数据集相同。既然是RepeatDataset
那么一定是重复了自己定义的数据集,那就看看定义的数据集中是否指定了classes
。结果一看,果然没有指定,加上就解决了data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='RepeatDataset', times=3, dataset=dict( type='CocoDataset', ann_file='/home/chenhongkun/mmdetection/data/coco/annotations/train.json', img_prefix='/home/chenhongkun/mmdetection/data/coco/train2017', # classes=('tennis', ), pipeline=[ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ]), classes=('tennis', ), ann_file='/home/chenhongkun/mmdetection/data/coco/annotations/train.json', img_prefix='/home/chenhongkun/mmdetection/data/coco/train2017'), val=dict(...) test=dict(...)
训练了一个 epoch 来看看结果,发现很难检测到小的物体。而且经过了70个 epoch 的训练,最后 Loss 没有持续下降,感觉优化停止了。现在尝试增加 batch 数量,下一个手段就是减少学习率。我也在思考会不会是 anchor 的问题,因为 anchor 太大了根本检测不到这么小的物体
现在修改了 anchor 大小效果不错,继续训练…最后可视化结果来看有许多重复的结果,NMS 的阈值需要再调一下,而且现在的预测值非常低,不知道为什么,不过位置还是可以接受
工具箱
print_config.py
,打印完整 config 文件python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]
analyze_logs.py
,可以将日志中的记录值绘制成曲线图python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]
tools/analysis_tools/analyze_results.py
calculates single image mAP and saves or shows the topk images with the highest and lowest scores based on prediction results. linkpython tools/analysis_tools/analyze_results.py \ ${CONFIG} \ ${PREDICTION_PATH} \ ${SHOW_DIR} \ [--show] \ [--wait-time ${WAIT_TIME}] \ [--topk ${TOPK}] \ [--show-score-thr ${SHOW_SCORE_THR}] \ [--cfg-options ${CFG_OPTIONS}]
dataset_converters
工具箱能够将不同的数据集格式转为 coco format,比如使用image2coco.py
能够将图片生成没有标签的 coco format json 文件DetVisGUI project,为一个可视化项目,能够将检测结果
result.pkl
可视化
完整 config 文件
checkpoint_config = dict(interval=5) # mark
log_config = dict(interval=20, hooks=[dict(type='TextLoggerHook')]) # mark
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = '/home/declan/vscode/mmlab_test/mmdetection/checkpoints/mask_rcnn_r101_fpn_mstrain-poly_3x_coco_20210524_200244-5675c317.pth'
resume_from = None
workflow = [('train', 1)]
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=8, # mark
workers_per_gpu=2,
train=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type='CocoDataset',
ann_file='/home/declan/vscode/mmlab_test/mmdetection/data/coco/annotations/train.json',
img_prefix='/home/declan/vscode/mmlab_test/mmdetection/data/coco/train2017',
classes=('tennis', ),
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]),
classes=('tennis', ),
ann_file='/home/declan/vscode/mmlab_test/mmdetection/data/coco/annotations/train.json',
img_prefix='/home/declan/vscode/mmlab_test/mmdetection/data/coco/train2017'),
val=dict(
type='CocoDataset',
ann_file='/home/declan/vscode/mmlab_test/mmdetection/data/coco/annotations/val.json',
img_prefix='/home/declan/vscode/mmlab_test/mmdetection/data/coco/val2017',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
classes=('tennis', )),
test=dict(
type='CocoDataset',
ann_file='/home/declan/vscode/mmlab_test/mmdetection/data/coco/annotations/test2017.json',
img_prefix='/home/declan/vscode/mmlab_test/mmdetection/data/coco/test2017',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
classes=('tennis', )))
evaluation = dict(interval=1, metric=['bbox', 'segm'])
optimizer = dict(type='SGD', lr=0.00125, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[10, 20, 30, 40, 50]) # mark try 70 epoch
runner = dict(type='EpochBasedRunner', max_epochs=100)
model = dict(
type='MaskRCNN',
backbone=dict(
type='ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet101')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[1], # mark important
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=1,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.01),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.01),
max_per_img=100,
mask_thr_binary=0.5)))
classes = ('tennis', )
work_dir = './work_dirs/mask_rcnn'
gpu_ids = [7]